Skip to main content Skip to navigation
CAS in the Media Arts and Sciences Media Headlines

Heat, cold extremes hold untapped potential for solar and wind energy

Conditions that usually accompany the kind of intense hot and cold weather that strains power grids may also provide greater opportunities to capture solar and wind energy.

A Washington State University-led study found that widespread, extreme temperature events are often accompanied by greater solar radiation and higher wind speeds that could be captured by solar panels and wind turbines. The research, which looked at extensive heat and cold waves across the six interconnected energy grid regions of the U.S. from 1980-2021, also found that every region experienced power outages during these events in the past decade.

“These extreme events are not going away anytime soon. In fact, every region in the U.S. experiences at least one such event nearly every year. We need to be prepared for their risks and ensure that people have reliable access to energy when they need it the most,” said lead author Deepti Singh, a Washington State University climate scientist.”Potentially, we could generate more power from renewable resources precisely when we have widespread extreme events that result in increased energy demand.”

Read the full story:
ScienceDaily
EnergyCentral
TechXplore
SolarPowerConference

 

 

Genes identified that allow bacteria to thrive despite toxic heavy metal in soil

Some soil bacteria can acquire sets of genes that enable them to pump the heavy metal nickel out of their systems, a study has found. This enables the bacteria to not only thrive in otherwise toxic soils but help plants grow there as well.

A Washington State University-led research team pinpointed a set of genes in wild soil bacteria that allows them to do this in serpentine soils which have naturally high concentrations of toxic nickel. The genetic discovery, detailed in the journal Proceedings of the National Academies of Sciences, could help inform future bioremediation efforts that seek to return plants to polluted soils.

“We can say with certainty that these are the genes that are letting the bacteria survive the heavy metal exposure because if we take them away, they die. If we add them to a new bacterium that was sensitive to the heavy metal, all of the sudden it’s resistant,” said Stephanie Porter, the study’s senior author and a WSU evolutionary ecologist.

Read the full story:
Phys.org
ScienceDaily
TechnologyNetworks

New Genetic Tools Have Dramatically Changed Wildlife Conservation

The collection of eDNA is just the first step in trying to identify species from the bits of themselves they leave behind as they roam different habitats. The dead skin, saliva, scat, and other cellular material that organisms shed must then be analyzed in a laboratory using molecular methods.

At Washington State University’s School of the Environment, associate professor Caren Goldberg extracts the DNA trapped in the filters that [National Park Service biologist Andy] Hubbard sends from southern Arizona. “We do one species at a time, and then sometimes we have to do some extra cleaning on the samples, and then we process all the data, and we double-check it to make sure everything looks good before sending it back,” she said.

Environmental technology is a valuable tool for finding elusive species like frogs, Goldberg said. She knows how slippery the creatures can be because, as a University of Arizona student, she completed her master’s thesis after chasing barking frogs in the mountains and surveying Chiricahua leopard frogs that can be difficult to see in murky, and often deep, water holes.

Read the full story:
Undark.com
The Good Men Project

Investigating Spin and Chirality Interactions

Electronic devices known as spintronics employ an electron’s spin rather than its charge to produce an energy-efficient current that is used for computing, data storage, and communication.

Researchers have successfully measured the amount of charge generated in spin-to-charge conversion within a spintronic material at ambient temperature, thanks to a printable organic polymer that prints into chiral configurations. The polymer’s adjustable properties and adaptability make it appealing for use in understanding chirality and spin interactions more broadly, as well as for less costly, environmentally friendly, printed electronic applications.

The study can be found in Nature Materials. Co-first authors are Kyung Sun Park of Urbana-Champaign and Rui Sun of ORaCEL with the support of eight co-authors, including Zhi-Gang Yu of Washington State University.

Read the full story:
AZO Materials
MSN.com

How our first jobs shape the rest of our lives

We all start somewhere. And our first jobs — no matter if you’re an ice cream scooper or an investment intern — leave lasting marks on us. First jobs teach us about ourselves and the world around us. Sometimes for better, sometimes for worse.

MPR News host Angela Davis talked with WSU sociologist Monica Kirkpatrick Johnson about how our first jobs shape our minds, habits and futures.

Listen to the full interview:
Minnesota Public Radio News